skip to main content


Search for: All records

Creators/Authors contains: "Santiago, Juan G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Capillary‐fed boiling of water from microporous metal surfaces is promising for low thermal resistance vapor chamber heat spreaders for hot spot management. Vapor transport through the void spaces in porous metals enables high heat fluxes at low evaporator superheat. In this work, the critical heat fluxes of capillary‐fed boiling in copper inverse opal (IO) wicks that consist of uniform pores with 3D periodicity is investigated. Template sintering is used to enlarge the “necks”, or hydraulic vias, that bridge adjacent IO pores of diameters from 0.6 to 2.1 µm. The enhanced neck size increases the hydraulic permeability for vapor extraction by an order of magnitude, and subsequently the CHF from 100 to 1100 W cm−2. Modeling of the boiling limit accounts for the vapor pressure drop through an IO wick using Darcy's law at a given bubble departure rate. This work links the effect of wick structure design on the boiling crises phenomenon in microporous surfaces and demonstrates material capabilities for ultrathin and low superheat thermal management solutions for high‐power‐density electronic devices.

     
    more » « less
  2. Abstract

    This paper reports the first integration of laser‐etched polycrystalline diamond microchannels with template‐fabricated microporous copper for extreme convective boiling in a composite heat sink for power electronics and energy conversion. Diamond offers the highest thermal conductivity near room temperature, and enables aggressive heat spreading along triangular channel walls with 1:1 aspect ratio. Conformally coated porous copper with thickness 25 µm and 5 µm pore size optimizes fluid and heat transport for convective boiling within the diamond channels. Data reported here include 1280 W cm−2of heat removal from 0.7 cm2surface area with temperature rise beyond fluid saturation less than 21 K, corresponding to 6.3 × 105W m−2K−1. This heat sink has the potential to dissipate much larger localized heat loads with small temperature nonuniformity (5 kW cm−2over 200 µm × 200 µm with <3 K temperature difference). A microfluidic manifold assures uniform distribution of liquid over the heat sink surface with negligible pumping power requirements (e.g., <1.4 × 10−4of the thermal power dissipated). This breakthrough integration of functional materials and the resulting experimental data set a very high bar for microfluidic heat removal.

     
    more » « less